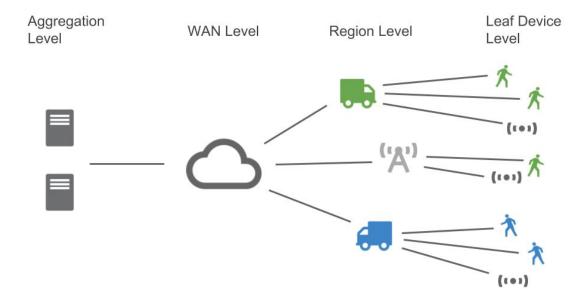
SDN for Wildfire Response

Peter Heppner

SDN for Disaster Relief Networks

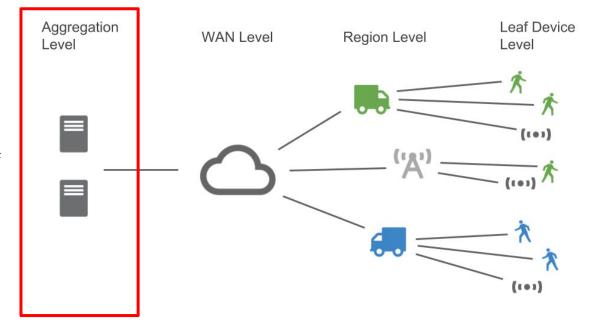
- Lots of research on individual components, little on integration.
- SDN holds lots of promise for efficient, resilient networks.
- Current mobile networks don't fit requirements of disaster workers.

Motivating Example - Wildfires

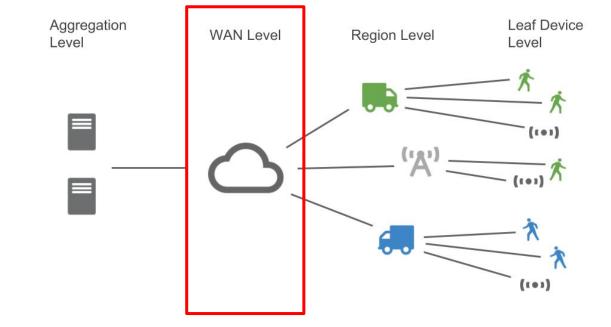

- NIFC reported more than 70k wildfires in the US in 2017 which burned a total of more than 10 million acres^[1].
- 14 direct wildfire-caused deaths in the US in 2017^[2].
- \$2 billion spent fighting wildfires in 2017^[3].
- Need for integrated communications and data networks.

[1] National Interagency Fire Center. 2017. 2017 Wildfires Reported to NICC. Available at https://www.predictiveservices.nifc.gov/intelligence/2017_statssumm/wildfire_charts_tables17.pdf (2018/12/2).

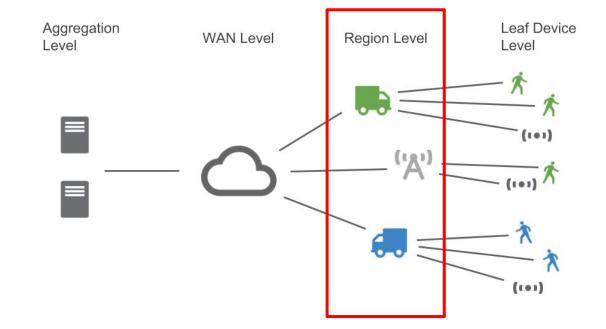
[2] National Interagency Fire Center. 2017. Fatalities by Year. Available at https://www.nifc.gov/safety/safety_documents/Fatalities-by-Year.pdf (2018/12/2).


[3] Laura Zuckerman. 2017. Cost of fighting U.S. wildfires topped \$2 billion in 2017. Available at https://www.reuters.com/article/us-usa-wildfires/cost-of-fighting-u-s-wildfires-topped-2-billion-in-2017-idUSKCN1BQ01F (2018/12/2).

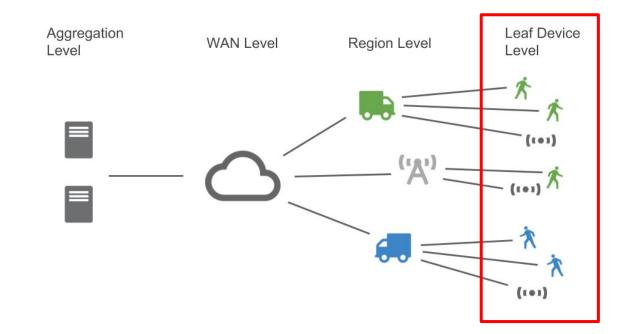
Network Example


Network Requirements - Aggregation

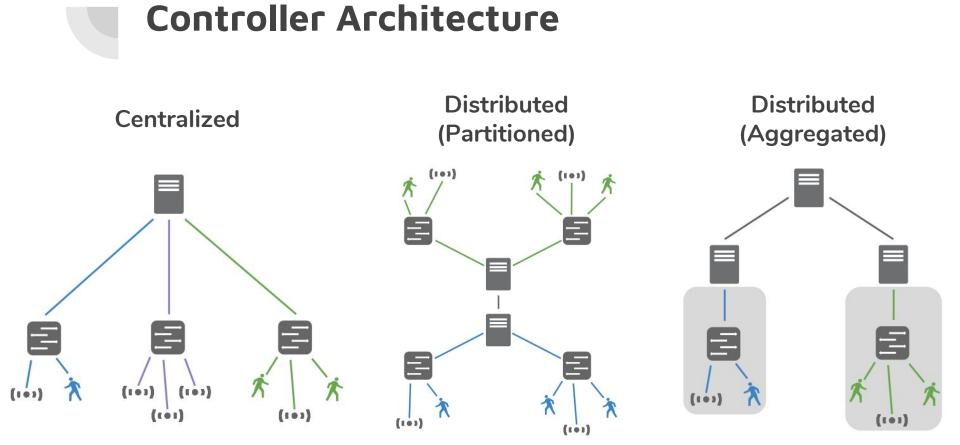
- Computation power, storage
- Reliable links to lower levels
- Ability to control rest of network


Network Requirements - WAN

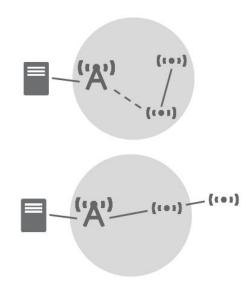
- Resilience to damage
- Optimal routing


Network Requirements - Region

- Scalability
- Ability to respond to failures and partitions
- Connectivity to aggregation level


Network Requirements - Leaf Devices

- Connectivity to other leaf level devices
- High mobility
- High efficiency
- Delivery / QoS guarantees


SDN Design Considerations

- Controller architecture
- Routing policies
- Resilience methods

Routing Policies

- Delivery, QoS
- Load balancing
- Increased range
- D2D links
- Software defined mobile ad hoc networks

Resilience Methods

- Reactive
 - On-demand recomputation
- Proactive
 - Fast-failover groups
 - Header-embedded backup paths
- Alternate
 - Secondary connections
 - D2D links
 - Message ferrying

Integration

- Putting everything together...
 - Distributed, flexible, scalable control
 - Routing policies that prioritize communications with QoS guarantees
 - Highly resistant to damage and partitioning

Testing

- Effectiveness
- Efficiency
- Resilience

Testing - Effectiveness

- Are requirements being met for all flow types?
 - QoS / delivery
 - Network failures
 - Geographical variation
- Have we selected the proper routing processes?

Testing - Efficiency

- Are the controllers managing the load?
 - CPU utilization
 - Bandwidth for control measurements
 - In-band vs. out-of-band
 - Time to establish routes for new flows
- Have we selected the best controller architecture and placement?

Testing - Resilience

- Does the network respond well to failure?
 - Single link failures
 - Regional failures
 - Permanent partitions
- This should be tested along with effectiveness and efficiency.

Related Applications

- Other disasters
- Tactical networks
- Smart cities
- Data centers / WAN

Future Applications

- Private networking
- Smart vehicular ad hoc networks
- Ultra-low maintenance networks

Questions?